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S U M M A R Y
In this study, we demonstrate the application of 3-D isotropic elastic full waveform inversion
(FWI) to a field data set from the Sleipner area in the North sea. The field data set consists of a
narrow azimuth marine towed streamer survey. The limited maximum offset of less than 2000 m
poses strong challenges for the FWI technique, due to the lack of wide-angle wave phenomena,
particularly for the deeper sediments. In addition, the lack of information about shear waves
implies that only the P-wave velocities can be estimated with some confidence. In this work,
the P-wave velocities are inverted using FWI, whereas the S-wave velocities and densities are
coupled to the P-wave velocities using empirical relationships. To check the validity of this
work flow, a synthetic sensitivity analysis inspired by a well log from the area is performed. In
this analysis the difference between acoustic and elastic FWI is also compared. The conclusion
from the sensitivity analysis is that, as long as the empirical relationships are not too far away
from the true relationships, the elastic FWI is able to resolve the subsurface parameters within
an acceptable error margin. Furthermore, the acoustic approximation fails due to the large
differences between the elastic and acoustic reflection and transmission coefficients, meaning
that elastic FWI is necessary for resolving the parameters satisfactorily. Acoustic and elastic
FWI are performed for the field data. The results of the field data example show that elastic
FWI produces an elastic model which accurately simulates the observed data, whereas the
acoustic FWI produces an acoustic model that includes artefacts, particularly in the upper part
close to the sea bottom. Elastic FWI is therefore favourable for short offset seismic streamer
data. The estimated elastic P-wave velocity models were used to depth migrate the data. The
depth migrated images show improved resolution and continuity compared to those migrated
using a model derived from conventional seismic processing methods. At the same time, the
P-wave velocities show strong correlations with the corresponding migrated seismic image,
which increases the confidence on the inverted model.

Key words: Inverse theory; Controlled source seismology; Computational seismology; Wave
propagation.

1 I N T RO D U C T I O N

The full waveform inversion (FWI) method is a technique for esti-
mating subsurface elastic parameters using inverse theory. FWI is
formulated as an optimization problem that seeks to minimize the
dissimilarities between field data and synthetic data. The problem
is solved by starting from an initial model which is then itera-
tively improved using linear approximations to the non-linear prob-
lem (Tarantola 1984; Mora 1987; Pratt 1999; Fichtner et al. 2006;
Virieux & Operto 2009). At the core of the method is the assump-
tion that field data can be approximated by a numerical solution
of a wave equation. The interaction between heterogeneous elastic
media and the waves is complex and includes mode-conversions,

pre- and post-critical reflections, transmissions, refractions, multi-
ple reflections and surface waves. The choice of the proper wave
equation and physical model is thus important in order to accurately
honour the complexity of the observed data.

In exploration geophysics, a classical assumption has been to
consider the subsurface as a fluid that is parametrized by the den-
sity (ρ) and P-wave (vp) velocity. There are two main reasons for
this choice. One is that conventional processing focuses on the kine-
matics of P waves, which are well modelled by the acoustic wave
equation. The other reason is due to limitations in available com-
puter resources. From a physical point of view, a better assumption
is to consider the subsurface as an elastic medium, parametrized
by the S-wave (vs) velocity, in addition to ρ and vp. The elastic
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assumption includes, for example, important phenomena like shear
waves, that are not predicted by the acoustic assumption, but that are
often visible in seismic field data. However, the elastic wave equa-
tion is more computationally expensive to solve than the acoustic
wave equation, which significantly increases the cost of FWI. Fur-
thermore, including elastic parameters causes an increase in the
solution space, which increases the ill-posedness and non-linearity
of the inverse problem. The ill-posedness and non-linearity can be
mitigated by including more information, such as multicomponent
data acquired on the sea floor.

In FWI, the elastic wave equation needs to be solved several
times during each iteration. The associated computational cost is
one of the main barriers for the applicability of FWI to large-scale
3-D problems (Virieux & Operto 2009). For this reason, field appli-
cations of elastic FWI are mostly restricted to 2-D problems. One
important difference between 2-D and 3-D wave propagation is in
the geometrical spreading factor. By considering the Green’s func-
tions of the wave equation, it can be shown that for a point source in
a homogeneous medium the amplitudes scale, at a distance r from
the source, as 1/r in 3-D and 1/

√
r in 2-D (Aki & Richards 2002).

Hence, the amplitudes in the synthetic data in the 2-D domain are
incorrect compared to the amplitudes in field data. To approximately
compensate for the difference in amplitudes, the field data must be
scaled prior to the 2-D inversion (Pratt 1999; Ravaut et al. 2004).
However, the approximate nature of this conversion may introduce
artefacts into the inverted parameter models (Auer et al. 2013).
Hence, one of the benefits of performing FWI in 3-D is that the
geometrical spreading factor is correctly modelled. Another benefit
of 3-D processing is the proper handling of the out of inline plane
events, and the improved resolution along the crossline plane.

The first applications of 3-D FWI in the literature used the
acoustic approximation to model synthetic data sets. Sirgue et al.
(2008) and Ben-Hadj-Ali et al. (2008) used frequency-domain im-
plementations to demonstrate FWI in 3-D using synthetic data sets,
whereas Vigh & Starr (2008) used a prestack plane-wave time-
domain implementation and a synthetic and real data set in 3-D.
Ocean-bottom cables (OBCs) have also been used to produce re-
liable results (Plessix 2009; Sirgue et al. 2009). Abubakar et al.
(2011) used the contrast-source method in 3-D to invert synthetic
data sets. Recent developments include more complicated wave
phenomena in the computation of the synthetic data set. In global
seismology, elastic anisotropic implementations of FWI have been
applied on much larger scales than in exploration geophysics to
quantify the structure of the upper mantle of the Earth (Fichtner
et al. 2010, 2013; Tape et al. 2010). Warner et al. (2013) applied a
3-D anisotropic pseudo-acoustic implementation of FWI on a mul-
ticomponent ocean-bottom data set acquired over the Tommeliten
field in the North Sea. 3-D isotropic elastic FWI implementations
have been used on a small-scale cross-well acquisition (Butzer et al.
2013) and a synthetic OBC data set (Vigh et al. 2014).

Common for almost all current applications of FWI is that a
velocity model is estimated mostly for the shallow area above the
reservoir zone of interest. This approach uses long-offset data con-
taining diving waves and wide-angle refracted events with limited
penetration depth. Several authors have demonstrated that in this
case it is possible to retrieve a vp model using the acoustic approx-
imation (Pratt 1999; Virieux & Operto 2009). To obtain velocities
also at reservoir depth, the reflected part of the wave field must be
employed. Barnes & Charara (2009) performed a synthetic study
and demonstrated that acoustic FWI is applicable for marine seis-
mic data when short-offset data is used. The requirement for the
success of acoustic FWI in this case is that the initial model for vp

must be accurately estimated. On the other hand, Raknes & Arntsen
(2014a) demonstrated using synthetic and real examples that for
seismic data that contains primarily reflections, it is crucial to use
elastic FWI to obtain reliable inversion results.

In this paper, we demonstrate the application of 3-D isotropic
elastic time-domain FWI to a short-offset (<2000 m) seismic field
data set consisting primarily of reflected waves. The field data set
was acquired over the Sleipner field in the North sea. Prior to the
inversion of the field data set, several assumptions must be made.
The effect of these assumptions on the results of FWI are investi-
gated in a synthetic sensitivity analysis. Acoustic and elastic FWI
are performed for the synthetic and field data to compare the two
ways of performing FWI. Results show that elastic FWI estimates
an elastic velocity model which reproduces the field data. We show
that the P-wave velocities can be used to produce conventional
depth migrated images with improved resolution and continuity,
and common image point angle gathers with improved flatness. A
comparison between the P-wave velocity model and the available
well data shows an improved fit after FWI.

The paper is organized as follows: In Section 2 we briefly describe
the theory that underlies FWI, in addition to a short description of
the implementation of the method. In Section 3 we describe the area
where the field data set was acquired, in addition to details about
the data set. Section 4 is devoted to the inversion work flow. The
synthetic sensitivity analysis is given in Section 5. The results for the
field data set is given in Section 6. The discussions and conclusions
are given in Sections 7 and 8, respectively.

2 T H E O RY

2.1 Full waveform inversion

FWI is a method that tries to find a parameter model that can
be used to produce synthetic data that is close to some measured
data (Tarantola 1984; Mora 1987; Pratt 1999; Fichtner et al. 2006;
Virieux & Operto 2009). Let M be the space of all admissible
models, and D the space of all possible data sets. The foundation
for the method is the assumption that synthetic data q in D can be
generated from an arbitrary model m in M using a wave equation.
Let L : M → D be the numerical wave operator which maps m
from M into D. The synthetic data can be generated as

L(m) = q. (1)

The solution of the problem is given by the inverse operator of L,

m = L−1(d), (2)

where L−1 is the inverse operator and d is the measured data. In
practice it is not possible to find an explicit expression for the inverse
operator.

The standard way of solving the inverse problem in eq. (2) is to
consider it as an optimization problem (Nocedal & Wright 2006).
We define an objective functional � : M → R+ (R+ is the space of
the positive real numbers), whose purpose is to measure the dissimi-
larities between q and d. We require that the solution of the problem,
that is, the point where q and d are equal, is an extreme point for
�(m). Hence, the solution to the problem can simply be expressed
as

m′ = arg min �(m), (3)

where m′ is the model in M we are searching for. The inverse
problem in eq. (3) is non-linear and ill posed.
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We use the limited-memory Broyden, Fletcher, Goldfarb, and
Shanno (L-BFGS) algorithm (Nocedal & Wright 2006) to search
for the extreme points of �(m). The update of the model is given
as

mk+1 = mk − αkH−1
k gk, (4)

where αk > 0 is the step length, H−1
k is an approximated inverse

Hessian matrix, and gk is the gradient of �(m) with respect to m at
step k. The L-BFGS algorithm tries to estimate the inverse Hessian
matrix using a predefined number of gradients (six in our imple-
mentation) from previous iterations, and has proven to be favourable
compared to standard conjugate-gradient methods (Brossier et al.
2009).

We use a normalized version of the standard least-squares norm as
the objective functional (Raknes & Arntsen 2014a). This functional
is defined as

�(m) = 1

2

ns∑
j=0

nr∑
i=0

‖q̂i, j (m) − d̂i, j‖2
2, (5)

where q̂i, j (m) = qi, j (m)/‖qi, j (m)‖2 is the normalized modelled
data, d̂i, j = di, j/‖di, j‖2 is the normalized measured data, nr is the
number of receivers in the data set, and ns is the number of shots
in the data set. Here, ‖·‖2 is the least-squares norm on D. The
benefit of using this functional is that the real and the synthetic data
are automatically scaled within the functional. If a standard least-
squares functional is used, then an important preprocessing step is
to scale the synthetic and the real data set such that the amplitudes
match.

Taking the derivatives of �(m) with respect to m gives the gra-
dient g,

g =
ns∑
j=0

nr∑
i=0

∂qi, j (m)

∂m
r̂i, j , (6)

where

r̂i, j = 1

‖qi, j‖2

(
q̂i, j 〈q̂i, j , d̂i, j 〉 − d̂i, j

)
(7)

is the residuals vector. Here, 〈·, ·〉 is the inner product on D. It is
worth mentioning that the gradient in eq. (6) is the same as if a
global correlation functional is used (Choi & Alkhalifah 2012).

The crucial step in FWI is the computation of g. Using the adjoint
state method (Tarantola 1984; Mora 1987; Pratt 1999; Fichtner et al.
2006), where the residuals r̂i, j are reversed in time and back prop-
agated from the receiver positions, the gradients can be calculated
using the numerical operator given in eq. (1).

2.2 Implementation

2.2.1 Modelling

We assume that the subsurface of the Earth is an isotropic elastic
medium parametrized by the density ρ, the P-wave velocity vp and
the S-wave velocity vs. In the following, the Einstein summation
convention is used. Wave propagation in the medium is modelled
using the equation of motion

ρ(x)∂2
t ui (x, t) − ∂ jσi j (x, t) = fi (x, t), (8)

and the constitutive relation

σi j (x, t) = (
λ(x)δi jδkl + μ(x)(δikδ jl + δilδ jk)

)
∂luk(x, t), (9)

where ρ(x) is the density, λ(x) and μ(x) are the Lamé parameters,
ui (x, t) is a component in the particle displacement vector, σi j (x, t)
is a component in the stress tensor, and fi (x, t) is a component
in the force vector (Aki & Richards 2002). Numerically, the equa-
tions are solved using an explicit staggered-grid finite difference
method (Virieux 1986), with high-order spatial differential oper-
ators (Holberg 1987). To simulate non-reflecting boundaries the
perfectly matched layer absorbing boundary conditions are used
(Berenger 1994; Zhen et al. 2009). The reflecting sea surface at the
top of the model is approximated using the method described in
Mittet (2002).

2.2.2 Gradient computation

To compute the gradient using the adjoint state method, the forward
propagating wave field from the source is cross correlated (in time)
with a backward propagating field, where the residuals in eq. (7)
act as sources at the receiver positions (Tarantola 1984; Mora 1987;
Pratt 1999; Fichtner et al. 2006). The gradient with respect to vp for
a single shot is given as (Mora 1987)

gvp = −2ρvp

∫
T

(∇ · u f
) (∇ · ub

)
dt, (10)

where u f = u f (x, t) is the particle displacement vector for the
forward wave field propagating from the source position, and
ub = ub(x, t) is the particle displacement vector for the backward
residual wave field propagating from the receiver positions.

The major problem with the gradient computation in three di-
mensions is the requirement for the snapshots for both the forward
and the backward propagated wave fields at each time step, as can be
seen in eq. (10). A normal procedure in two dimensions is to store
the snapshots on disk of the forward wave fields during the forward
modelling, and read them into memory when they are needed. In
three dimensions, this procedure requires extreme amounts of disk
space, and is therefore not affordable in practice for the number of
grid points and the specifications of the computer cluster used here.

To overcome this problem the following strategy is used. During
forward modelling, the forward wave fields in eq. (10) are stored at
the six boundaries. In addition, to prevent the loss of wave fronts that
have not reached the boundaries at the end of the forward modelling,
full snapshots of all wave fields in the computational domain are
stored at the last time step. When the backward propagating wave
fields are computed, the forward propagated wave fields are recon-
structed in reverse-time by using the stored wave fields as boundary
conditions. This strategy effectively reduces the storage require-
ments of the gradient computation at the cost of one additional
reverse-time modelling. An alternative method to reduce the stor-
age requirements is the optimal checkpointing method (Griewank &
Walther 2000; Symes 2007). This method increases the total com-
putational cost compared to the above mentioned method due to the
extra modelling steps required between each checkpoint in time.

3 T H E S L E I P N E R F I E L D DATA S E T

3.1 Acquisition

The Sleipner area lies west of Norway in the North Sea. It consists
of the Sleipner Vest gas field and the Sleipner Øst condensate field,
in addition to some smaller fields (Fig. 1). The gas produced from
the Sleipner Vest field contains CO2, which due to environmental
and economical reasons is stripped away from the gas and injected
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Figure 1. A map of the Sleipner area in the North Sea west of Norway.
The Sleipner Vest field is a condensate field, and the Sleipner Øst field is
a gas field. CO2 is stripped from the gas and injected at the Sleipner Øst
facility. The grey shaded square is the area where the data set that we use in
this study was acquired, and it covers the underground formations where the
CO2 is injected. The coordinate system is UTM zone 31N. (Map courtesy
of the Norwegian Petroleum Directorate.)

into the Utsira formation at the Sleipner Øst facility (Furre & Eiken
2014). The Utsira formation consists of a 200–300 m thick high
porosity sandstone layer at approximately 700–800 m depth, and
the overburden consists of clay-rich sediments (Chadwick et al.
2004; Furre & Eiken 2014). In 1994, before the injection of gas
started, a 3-D narrow azimuth streamer survey was acquired over
the area. This data set was acquired using five receiver cables towed
at a depth of 8 m. The cable length was 3000 m and the separation
between each cable was 100 m. The source was two 3400 in3 air gun
arrays towed at 6 m depth, with shooting interval 18.75 m (flip-flop
shooting). The recording length for each shot was 5.5 s.

3.2 Preprocessing

The contractor had applied the following processing steps to the
data set before it was released:

(i) Restricted maximum offset to 1700 m,
(ii) Reduced the recording length to 2.3 s,
(iii) Applied a signature deconvolution and swell noise filter,
(iv) Applied a low-cut filter at 6.0 Hz,
(v) Sampled the time-step to 2.0 ms,
(vi) Gained the data using a t2 scaling factor.

3.3 Shot gathers

Fig. 2(a) shows the first 1.4 s of a shot gather from the centre
cable. It can be seen immediately that at near offset, that is, below
400 m offset, the arrivals are mainly reflections and multiples. For
offsets over 400 m the data is dominated by refracted arrivals.

These arrivals are a mixture of turning and head waves, surface
waves, and post critical reflections, in combination with their ghosts
and surface related multiples. Hence, the direct wave is difficult to
distinguish from the other arrivals. In the 6–8 Hz filtered version of
the shot gather (Fig. 2b) all the distinct arrivals are smeared out. In
particular, the refracted and the direct arrivals are smeared together.
As the frequency band is increased (Figs 2c and d), the number of
resolvable events in the data set increases. At 15 Hz the refracted
arrivals are easily seen, as well as the near offset reflections.

3.4 Well log

An exploration well was drilled in the western part of the study area
(Fig. 4a). The vertical profile of the P-wave velocity sonic log is
given in Fig. 3. The well log is partly edited in the intervals where
there are no horizontal oscillations. From the figure we observe
three high velocity layers at approximately 600, 800 and 1100 m.
The Utsira formation lies between the two high velocity layers at
approximately 800 and 1100 m depth.

4 I N V E R S I O N W O R K F L OW

4.1 Inversion area

To restrict the total computational cost of performing the inversion,
we choose a subset from the acquisition area of the survey. The
size of the study area is approximately 2.0 km × 8.0 km. In total,
1704 shots were acquired inside the area. We decimate the field
data set by picking every second shot such that the final data set
consists of 852 shots and 570840 data traces. The shots are spread
over eight shot lines (Fig. 4a), and the shot interval is approximately
37.5 m. As can be seen in Fig. 4(a), one of the lines was shot in the
opposite direction compared to the rest of the lines. In what follows,
all coordinates are given with respect to the coordinates in Fig. 4(a).

In Fig. 4(b) a fold plot of the data set is given. This plot is made
by counting the number of common-midpoints (CMP) into bins of
size 25 m × 25 m. Under the assumption of a plane horizontal
layered Earth, the fold plot is a measure of the redundancy with
which each position is illuminated by the acquisition geometry. As
can be seen in the map, the fold is locally non-uniform. This is
due to irregular acquisition, caused mainly by the feathering of the
streamers by the ocean currents during the seismic survey. Since
the fold is an indication of how many traces are summed together
to form the gradient, the irregular distribution of the fold at each
surface position might thus contribute to add an acquisition imprint
on the gradient of FWI.

4.2 Data regularization

The field data set must be regularized to fit into the inversion scheme.
The data regularization consists of the following steps: (i) choosing
the frequencies to be used in the inversion, (ii) moving the data traces
into the numerical grid, (iii) reverse the preprocessing sequences
applied by the contractor, and match the synthetic data with the
field data.

Since FWI is solved using a local optimization method, it may
converge to a local minimum a certain distance from the global min-
imum (Fichtner 2011), or the data may be cycle-skipped (Virieux
& Operto 2009). To prevent this from happening, we perform se-
quential inversion runs, where we in each run gradually increase the
frequency band for the data set (Bunks et al. 1995). By using the
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Figure 2. Shot gather from the inversion area for different frequency bands: (a) The full frequency band, (b) 6–8 Hz, (c) 6–11 Hz and (d) 6–15 Hz.

Figure 3. Sonic well log from the inversion area (see Fig. 4a for the position
of the well). The log is partly edited.

method described by Sirgue & Pratt (2004), we use the following
frequency bands: 6–8 Hz, 6–11 Hz, and 6–15 Hz in the inversion.

Since the data set was acquired on a continuous and irregular
grid, each receiver must be moved to the numerical grid used in the

inversion. Due to the low frequencies used in the inversion, we use
a simple data binning technique where each receiver trace is moved
to the nearest grid point without amplitude or phase corrections.
For each receiver, the distance to all four corners in the numerical
grid cell is computed, and the receiver is moved to the nearest cell
corner. The average distance a trace is moved is 4.8 m, whereas the
maximum and minimum distances are 8.8 m and 0.0 m, respectively.

Unfortunately, the only preprocessing step that is reversible is
the time gain applied to the data set. Each trace in the data set
is multiplied by t−2. To check that the decay is correct, the field
data set is compared to the synthetic data. Interpolation is used to
reduce the time sampling to 1.0 ms, which is the time sampling
used in the modelling. The last step is to add time delay to the data,
such that the first arrivals in the field data set match the synthetic
counterpart.

4.3 Source wavelet estimation

To estimate the source wavelet, we stack the near-offset traces from
several shots, and mute away everything but the direct arrival. We
use the resulting data set as input to FWI, where we invert for
the source wavelet in the time-domain. Since we are using near-
offsets, we use small parameter models in the inversion, such that
the estimation of the source wavelet is a relatively fast procedure.
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Figure 4. (a) Overview of the area used in the inversion. The blue lines are source positions, and the grey shaded area is the position for all the receivers. The
red circle is the position of the exploration well. (b) Fold plot of the seismic data.

Since several frequency bands are used in the inversion, a source
wavelet is estimated for each frequency band.

4.4 Inversion strategy

Inverting for three elastic parameters using FWI is difficult, particu-
larly when working with streamer data (Raknes & Arntsen 2014b).
Therefore, we use FWI to invert for vp and update ρ and vs using
empirical relationships. Coupling densities and S-wave velocities
to the P-wave velocities has proven to be a successful approach in
situations where information about shear waves are not present in
the data (Shipp & Singh 2002; Raknes & Arntsen 2014a).

The choice of empirical relationships is not straightforward since
it is difficult to find a perfect match for all rock types (Mavko et al.
2009). We use the well-known Gardner’s relationship (Gardner et al.
1974), which is valid for many rock types, to link ρ to vp. This
relationship is given as

ρ =
{

1000 if vp ≤ 1500,

310v0.25
p if vp > 1500.

(11)

For the relationship between vs and vp we use the so-called ‘mud-
rock’ line (Castagna et al. 1985), which is given as

vs = 0.862vp − 1172. (12)

In the above equations [ρ] = m kg−3 and [vp] = [vs] = m s−1.
The total computational cost is reduced by using the cyclic shot

sub sampling method (Ha & Shin 2013). All shots in the data set
are divided into different groups. In each iteration only shots from
one group are used. In the next iteration, a new group of shots is
used. When all groups have been used, the model is covered by each
shot at least one time. Hence, the computational cost is reduced by
a factor equal to the number of groups.

To reduce the computational cost even more, we divide the full
model into smaller models such that each local model includes only
a single shot and the corresponding receivers. This procedure has
major impact on the runtime for computing the synthetic data and
the gradients for each shot. Even though neighbouring local models
are overlapping, artefacts due to low aperture will be visible in the
results.

5 S Y N T H E T I C S E N S I T I V I T Y A NA LY S I S

To investigate different aspects of the inversion work flow presented
in Section 4, we use a synthetic model inspired by the well log from
the inversion area (Fig. 3). In the synthetic model, the magnitude
of the elastic parameters increases with depth, and three layers with
large velocities are included to mimic the layers that are visible
in the true well log (Fig. 5). The parameters are linked using eqs
(11) and (12). To reduce the error sources in the inversion due to
a complicated model, the synthetic model only varies vertically. In
the following, we study the sensitivity with respect to the following
aspects: the cyclic sub sampling method, the difference between
elastic and acoustic FWI, and the influence of wrong empirical
relationships used in the inversion.

We simulate a conventional 3-D streamer survey consisting of
316 shots with 100 m shot interval. The shots are spread over
four sail lines. The distance between each line is 500 m. Five re-
ceiver cables with length 1700 and 12.5 m receiver interval are
towed behind the source. The distance between each receiver cable
is 100 m. The source wavelet is a Ricker wavelet with 10.0 Hz
centre frequency. The model is 1400 m in depth, and 2500 and
6000 m in the horizontal directions. The grid sampling is 12.5 m
in all directions, such that the numerical grid for each param-
eter consists of approximately 10.7 million points. The initial
model is created by applying a smoothing operator on the true
model.

We start the sensitivity analysis by testing the shot sub sampling
method. Two inversion runs are performed. In the first run all 316
shots are used in each iteration, whereas in the second run four
groups of shots are used. There are 79 shots with a shot distance
of 400 m between each shot in each group. The true empirical
relationships (eqs 11 and 12) are used to update ρ and vs in each
iteration. Fig. 5 shows vertical profiles of the true, initial and inverted
model for the three elastic parameters with and without sub sampling
used in the inversion. We observe that there are side lobes at each
interface, which is expected due to the frequency content of the data.
The results obtained with the shot sub sampling method have lower
magnitudes than the results obtained without sub sampling. It is in
the first 800 m in depth the differences are present, below 800 m
there are no significant differences between the two inversion runs.
The conclusion on this test is that, despite the small difference in
magnitude in the model updates, the shot sub sampling method is
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Figure 5. Vertical profiles of the models in the synthetic test for the shot sub sampling method. (a) ρ, (b) vp and (c) vs (blue line: true model, green line: initial
model, solid red line: inverted model without shot sampling, dotted red line: inverted model with shot sampling).

Figure 6. Vertical profiles of the models in the synthetic example for acous-
tic inversion when vp is inverted for and ρ is updated using the empirical
relationship. (a) ρ, and (b) vp (blue line: true model, green line: initial model,
solid red line: inverted model).

favourable due to reduction in the overall computational cost, and
is therefore used in the remaining tests.

An important question is if there is a difference between acoustic
and elastic FWI using near-offset data. We test two different ways
of performing acoustic FWI on elastic data. In the first test we invert
for vp and update ρ using the true empirical relationship (eq. 11).
In the second test both vp and ρ are inverted for using FWI. The
results for the first test are given in Fig. 6, whereas the results for
the second test are given in Fig. 7. From the figures we observe that
the acoustic FWI has problems with estimating correct amplitudes
for the two parameters in the sea bottom. Moreover, the amplitudes
further down in the models are wrong, in addition to being slightly
shifted downwards in depth. The problems in the sea bottom can
be explained by the differences in the reflection and transmission
coefficients between an acoustic and elastic medium.

We now test what happens with the inverted parameter models if
wrong empirical relationships are used in the updates. In the first
test, we use a vs relationship that differs from the true relationship.
The updates of vs are done using (Mavko et al. 2009)

vs = 0.842vp − 1099, (13)

Figure 7. Vertical profiles of the models in the synthetic example for acous-
tic inversion when vp and ρ are inverted for. (a) ρ, and (b) vp (blue line: true
model, green line: initial model, solid red line: inverted model).

and the ρ model is updated using the true relationship in eq. (11).
From the final inverted models in Fig. 8 we observe that both
the ρ and vp models are influenced by the wrong vs update.
The interfaces somewhat follow the pattern of the true model,
but the amplitudes of the updates are wrong. At the deepest
part in the model, the inversion is hardly able to perform any
updates.

In the next test, we use a wrong relationship for both vs and ρ.
The updates for ρ are given as

ρ =
{

1000 if vp ≤ 1500,

250v0.25
p if vp > 1500,

(14)

and the updates for vs are done using eq. (13). The final inverted
models are given in Fig. 9, from which we observe that the inverted
models for vp and vs are similar to the models obtained in the test
where only the vs relationship was wrong. From this test, it may
look like a wrong update in ρ is less important than a wrong update
in vs.

From the sensitivity analysis it is clear that as the depth is
increased, the ability of FWI to update the models is reduced.
Thus, the resolution at the deepest parts in the models are small,
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Figure 8. Vertical profiles of the models in the synthetic example when wrong vs relationship is used in the updates. (a) ρ, (b) vp and (c) vs (blue line: true
model, green line: initial model, solid red line: inverted model).

Figure 9. Vertical profiles of the models in the synthetic example when both ρ and vs are updated using wrong empirical relationships. (a) ρ, (b) vp and (c) vs

(blue line: true model, green line: initial model, solid red line: inverted model).

compared to the shallower parts. This is due to the short offsets in the
data. In the best case, below 1000 m depth the inversion somewhat
catches the interfaces, but the amplitudes of the updates are small.
In all tests, the first 500 m of the results demonstrate an issue with
FWI: even though the initial model is identical to the true model
in this region, the models are updated during the inversions. The
result for the acoustic inversion demonstrates that elastic inversion
is preferable for this type of data. In general, if correct empirical
relationships are used to update the parameters not inverted for,
then FWI is capable of estimating the parameters within the ac-
cepted resolution for the frequencies used in the inversion. On the
other hand, wrong relationships yield lower resolution in the final
inverted models. Finally, it is worth mentioning the impact of the
source and receiver geometry on the inverted models. The updates
show an imprint of the sail lines. In the scenario of narrow azimuth
acquisitions, FWI shows the highest resolution along the sail lines,
and the worst resolution in between the lines.

6 I N V E R S I O N O F T H E S L E I P N E R
DATA S E T

The starting point for the inversion of the field data set is the esti-
mation of the source wavelet. Obtaining a good approximation of
the source wavelet is important for FWI. An inaccurate estimate of
the source wavelet will most likely result in artefacts in the inverted
model, but can, in the worst case, result in convergence into a local
minimum. The estimated source wavelets and their spectra are given
in Fig. 10. We observe that the shape of the wavelets does not differ
significantly, and that the source spectrum does not have notches.
The wavelets are similar to bandpass filtered Ricker wavelets with
reversed polarity. Before the wavelets are used in the inversion, they
are tested on arbitrary shots in the data set. Some small modifica-
tions of the source wavelets are necessary, to yield a better match
between the real and synthetic shots.

Prior to the inversion, the 852 shots are divided into four equal-
sized groups. The distance between each shot in one group is
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Figure 10. The estimated source wavelets and their spectra in the different
frequency bands: (a) 6–8 Hz, (b) 6–11 Hz, and (c) 6–15 Hz.

approximately 150 m. The initial model (Figs 11a and 12a) is
1437.5 m deep, and 2500 m and 8250 m in the horizontal directions,
and was made using traveltime tomography. The grid sampling is
12.5 m on all axes such that each elastic parameter model consists
of approximately 15 million grid points. Three inversion runs are
performed. For the first run, where the 6–8 Hz data is used, the
initial model is used. For the two other runs the final model from
the previous inversion run is used as initial model. Vertical slices
of the initial model and the inverted models for each frequency
band are given in Figs 11 and 12. We observe that as the frequency
content is increased, the inversion sharpens up the models and intro-
duces several clear structures. The clearest structures are the high
velocity layer at approximately 600 m depth, and the flat layers at
approximately 900 m and deeper. Some oscillations are visible in
the sea bottom. By comparing the models for the 6–15 Hz inversion
(Fig. 11d) with the model from the 6–8 Hz inversion (Fig. 11b), we
observe that in the former model a more distinct layer is visible at
approximately 400 m depth. There are small differences between
the two last inverted models.

Trace comparisons of the synthetic data and the field data for
the three frequency bands are shown in Fig. 13. In general, the
final synthetic data show a better fit to the field data than the initial
synthetic data. There is no perfect match between the final data and
the field data. The small time shifts visible can be explained by the
positioning of the traces into the numerical grid. Furthermore, the
amplitude differences in the primary reflections are a result of the
processing sequence applied to the field data, and a not perfectly
resolved sea bed.

As in the synthetic sensitivity analysis, two acoustic inversions of
the 6–8 Hz data set are performed to compare elastic and acoustic

Figure 11. Vertical slices at x = 1162.5 m (see Fig. 4a) of the vp model for the field data set: (a) initial model, (b) inverted model using the frequency band
6–8 Hz, (c) inverted model using frequency band 6–11 Hz, and (d) inverted model using frequency band 6–15 Hz.
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Figure 12. Vertical slices at y = 4000.0 m (see Fig. 4a) of the vp model for the field data set: (a) initial model, (b) inverted model using the frequency band
6–8 Hz, (c) inverted model using frequency band 6–11 Hz, and (d) inverted model using frequency band 6–15 Hz.

FWI. In the first inversion run, FWI is used to invert for vp whereas ρ

is updated using eq. (11). In the second acoustic inversion run, both
vp and ρ are estimated using FWI. The inverted acoustic models are
given in Fig. 14. Both inverted acoustic models have artefacts in the
regions down to approximately 600 m depth. There are more arte-
facts in the inverted models for the second inversion. The artefacts
are not visible in the inverted elastic model. The overall structure is
similar in the two acoustic models. Compared to the inverted elastic
model the interfaces in the models are slightly shifted downward in
depth. Furthermore, the layers at 400 m and 500 m depths are not
well resolved in the acoustic models.

Due to the artefacts in the upper parts of the inverted acous-
tic models, inversion using the two other frequency bands are not
performed since these artefacts will be further emphasized.

To compare the initial model with the final inverted elastic model,
we create seismic images using a standard 3-D implementation of
the one-way migration method [see for instance Etgen et al. (2009)
and the references given therein]. Fig. 15 shows a comparison of a
shallow horizontal seismic image and the corresponding vp model
for the initial and inverted models. The most obvious improvement
between the initial and final models is the focusing of the channel
system. The major channel is clearly visible in both the final image
and the inverted velocity model. The channel in the lower right
corner is also better resolved in the final images. In addition, a

channel-like event is better focused in the upper part of the final
image than in the initial image. On the overlay plots, we observe
that there is a clear correlation between the velocity model and the
seismic image for the final model. This correlation is not visible in
the initial model. The acquisition footprints are clearly visible in
both the seismic images and the velocity models.

In Fig. 16 a similar comparison for a horizontal slice at a deeper
depth is given. By comparing the initial seismic image with the
final seismic image, we observe that the channel in the lower left
of the slice becomes continuous in the final image. The shape of
the channel is also slightly changed between the two images. The
overlay plot illustrates that there is a good correlation between the
high velocity structure and the final seismic image at the lower right
in the plots. Moreover, the events at approximately y = 2500 m and
x = 1000 m in the final seismic image correlate with a low velocity
zone in the vp model.

Vertical slices through the initial and final image cubes are shown
in Fig. 17. Specific areas where there are improvements between
the images are marked with arrows in the plots. The focusing of the
shallow channels is clearly visible. The interface at approximately
400 m depth is better focused and more continuous in the final
image compared to the initial image. The same can be said about
the other interfaces at deeper depths. In general, the seismic image
created using the final inverted model is less noisy and with better
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Figure 13. Trace comparisons of the synthetic data for the initial model, final model, and the field data in the three frequency bands. The top row is a trace
from the center cable, whereas the bottom row is a trace from the outer cable. (a) and (d) 6–8 Hz, (b) and (e) 6–11 Hz, (c) and (f) 6–15 Hz.

continuity of the seismic events. From the common image point
angle gathers comparison given in Fig. 18, we observe that for the
final inverted model the gathers are flatter than for the initial model,
which is an indication that the P-wave velocity model better explains
the kinematics of the P-wave reflection events.

Fig. 19 shows a comparison of the smoothed well log from the
exploration well (Fig. 3), and the initial and final inverted models.
We observe that the inversion detects the events that are visible in
the well log, but the magnitudes are wrong. At the largest depths,
the updates are small in magnitude, as in the synthetic example. It
is clear, however, that the final inverted model is closer to the well
log than the initial model.

7 D I S C U S S I O N

Elastic FWI is a computer intensive problem in 3-D due to the
numerical methods used to compute the synthetic data and the model
gradients. Although there has been an increase in computer power
the last decade, we still need to restrict the number of grid cells in
the models and use methods like the shot sub sampling method (Ha
& Shin 2013), or the simultaneous-shot technique (Romero et al.
2000; Capdeville et al. 2005; Ben-Hadj-Ali et al. 2011), to be able
to run the method within acceptable run times. It is promising that
such methods can reduce the computational cost severely, and still
produce reliable results as our examples demonstrate.
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Figure 14. Vertical slices of the vp model for the acoustic inversion of the field data set. The top row shows inline vertical slices at x = 1162.5 m, and the
bottom row shows vertical slices at y = 4000.0 m. (a) and (c) inversion for vp, updating ρ with empirical relationships, (b) and (d) inversion for vp and ρ

simultaneously.

The normalized misfit functional (eq. (5)) must be used with
care when noise is present in the data. The consequence of the data
normalization is that, if noise is present in the data, then the residuals
and thus the gradient may be distorted. In the extreme case, a trace
that contains only noise will become as important as a trace with
little noise and clear data events. Since the gradients from each shot
are stacked together to form the full gradient, any incoherent noise
present in the data will contribute less than a coherent data event.

The preparation of the field data set to fit into the inversion
work flow is a challenging task. The nearest neighbour technique
for moving the receiver traces to a grid point is a possible error
source for the inversion. However, with the numerical grid used
in the inversion, a receiver is moved a small fraction of the wave
lengths in the data at the receiver locations. The error could be
reduced by using more accurate interpolation schemes (Choi &
Munson 1998; Hindriks & Duijndam 2000; Özdemir et al. 2010).
It is not clear that such techniques would work better due to the
coarse and irregular trace sampling. Within all sources of error, the
preprocessing steps performed before the field data set was released
are of higher importance. Ideally, the data that is input to FWI should
consist of raw unprocessed data. The preprocessing of the data using
signal analysis methods can affect the ability of FWI to match the
measured and simulated data, unless the simulated data is subject to
the same preprocessing steps as the field data (see Section 3). The
consequence of the restriction of the offset to 1700 m, as well as the
reduction of the recording length to 2.3 s, is that wide-angle data
are effectively removed from the data set. Furthermore, the swell-

noise and the low-cut frequency filters remove important signals
from the data. The long-offset and the low frequency information
are of fundamental importance for the successful resolution of the
subsurface, in addition to preventing the inversion from running
into a local minimum (Virieux & Operto 2009).

With the numerical grid and numerical differential operators
used in the synthetic and field example, the modelling of the
S-waves will be slightly affected by numerical dispersion. During
the preliminary work with the field data set, this was considered
to be problematic. Therefore, several tests were performed to in-
vestigate the impact of the numerical dispersion on the vp update.
The conclusion from these tests is that the update of vp was not
significantly affected by the small amount of numerical disper-
sion in the S-waves, since the wave modes are separated in the
computation of the gradient (Dellinger & Etgen 1990). Therefore,
the numerical grid was chosen such that some numerical disper-
sion is present in the S-waves to reduce the overall computational
cost.

FWI is not independent of choice of parametrization (Tarantola
1986). The parameters of a given parametrization have a non-linear
relation to the parameters of another parametrization (Mora 1987).
An alternative to the (ρ, vp, vs) parametrization is (ρ, Ip, Is) where
Ip and Is are the P-wave and S-wave impedances, respectively. The
radiation pattern is different for the latter parametrization (Operto
et al. 2013), which is favourable for short-offset data. However, it
is not clear that the latter parametrization would work better due to
the uncertainties in the data.
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3-D elastic FWI at Sleipner 1889

Figure 15. Horizontal slices at z = 231.25 m depth. (a) Seismic image with initial model, (b) seismic image with final model, (c) initial vp model, (d) final vp

model, (e) overlay plot for the initial model, and (f) overlay plot for the final model. The coordinates on the plots are related to the coordinates in Fig. 4(a).

The inverted models from the synthetic and field data sets show
that there are differences between acoustic and elastic inversion. For
the field data set (Figs 11 and 14) the differences in magnitude for
vp are not as big as in the synthetic example (Figs 6 and 7). This
can be explained by the magnitude of vs, which for the field data set

is smaller than for the synthetic data set. This yields a low S-wave
impedance contrast. When vp and ρ are inverted for simultaneously
using acoustic FWI, fine-grained artefacts appear in the model. The
artefacts can be explained by the fact that ρ is difficult to invert
for using FWI, particularly for short-offset data (Virieux & Operto
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Figure 16. Horizontal slices at z = 1043.75 m depth. (a) Seismic image with initial model, (b) seismic image with final model, (c) initial vp model, (d) final
vp model, (e) overlay plot for the initial model, and (f) overlay plot for the final model. The coordinates on the plots are related to the coordinates in Fig. 4(a).

2009), and that the solution space and thus the ill-posedness for
the inverse problem increase when inverting simultaneously for ρ

and vp. Mulder & Plessix (2008) inverted successfully for vp and
ρ using acoustic FWI and elastic data, whereas Przebindowska
et al. (2012) investigated the role of ρ in acoustic FWI and inverted

successfully for both vp and ρ using acoustic data. Both studies
used long-offset seismic data that are favourable for FWI (Virieux
& Operto 2009). Thus, their results are not directly comparable
with the results presented here. Barnes & Charara (2009) concluded
that acoustic FWI could be used for short-offset data if there are
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Figure 17. Seismic images at x = 1162.5 for using (a) the initial model and (b) the final inverted model. The arrows on the seismic images indicate positions
where there are improvements in the image between the initial and final images.

low S-wave impedance constrasts and the initial model for vp is
accurately estimated. In our acoustic inversion, we experienced a
shift downward in depth for the layers in the inverted acoustic
models compared to the inverted elastic models. This, in addition
to the artefacts in the sea bottom in the inverted acoustic models
(Fig. 14), demonstrate that elastic FWI is important for producing
reliable models for near-offset data.

One can question the validity of the two empirical relationships
used (eqs 11 and 12) for the field data set. The density relationship is

valid for many different rock types, whereas the S-wave relationship
is valid for mud rocks (Gardner et al. 1974; Castagna et al. 1985).
The choice of relationships was based on knowledge of the rock
types in the specific area. We have tried to run the inversion using
different empirical relationships, to investigate the sensitivity on the
final inverted results. The conclusion is that, as long as the contrast
between the water layer and the first sediments are not such that
big amplitude surface waves are generated, the choice of S-wave
relationship does not have major impact on the inversion results.

 by guest on July 24, 2015
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


1892 E.B. Raknes, B. Arntsen and W. Weibull

Figure 18. Common image point angle gathers: (a) initial model and (b) final model. The angle axis is between −50 and 50 degrees.

For the density, we tried to use a relationship estimated for the soft
seabed sediments (Hamilton 1978), and the Gardner’s relationship
for the harder rock types. This procedure had minor effects on the
inverted models. Hence, the inversion of the field data set is less
sensitive to the choice of the density relationship.

It is clear from the above discussion that there are several un-
certainties in the results for the field data set. This must be kept
in mind when the results are interpreted. In the final seismic im-

age (Fig. 17b), several clear and continuous interfaces are visible.
The reflection interface at approximately 800 m depth is the top of
the Utsira formation. The strong correlation between the inverted
vp model and the seismic images (Figs 15 and 16) demonstrate
that FWI is capable of producing inverted models that explain the
data better than, for instance, models produced using tomography.
It is, however, not a perfect match, as can be seen in the compar-
isons of the synthetic and real well log (Fig. 19). By comparing
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Figure 19. Vertical profiles of the vp model at the well position (grey line:
sonic well log, blue line: smoothed sonic well log, green line: initial model,
red line: inverted model).

the two well logs, we observe that several events are more or less
correctly aligned in depth, but the amplitudes of the inverted events
are wrong. If we compare the real well log with the vertical profiles
from the synthetic example (Figs 5–9), we observe that the inversion
has equal problems in the synthetic example, particularly at greater
depths, where the events are visible, but with wrong magnitudes.
The differences in magnitudes can be explained by the relatively
short offsets and the frequency content used in the inversion (Sir-
gue & Pratt 2004; Virieux & Operto 2009). In addition, the well is
placed on the edge of the data area (Fig. 4a), where the inversion
results might be affected by edge effects. As a result, the resolution
is not as good as it would have been if the well was placed in the
middle of the area.

One of the benefits of elastic FWI is the possibility to estimate
S-wave velocity models. We tried to invert for the S-wave velocity
using the FWI framework. The inversion was only making minor
updates in the upper part of the model, and ran quickly into a local
minimum. This behaviour can be explained by the small amount
of S-wave information in the field data set. Multi-component data
might therefore be necessary to be able to invert successfully for
S-waves (Sears et al. 2008, 2010; Raknes & Arntsen 2014b).

It is interesting to compare the results presented here with another
study from the same area. Queißer & Singh (2013) performed 2-D
elastic FWI using a single line from the Sleipner area. Compared
to the work flow presented here, in their study they used 2-D mod-
elling, a finer numerical grid and frequencies up to 80Hz. Their final
inverted 2-D model (Queißer & Singh 2013, fig. 5) shows a clearly
resolved layer at a depth of 600 m, and less clearly resolved layers at
depths of 1000 m and 1100–1200 m. In general the velocity model
is patchy and not well resolved below a depth of 800 m. In contrast
the vertical slice of our full 3-D result (Fig. 11) is reasonably well
resolved with layering for depths down to approximately 1200 m
and correlates well with the well log for the major layers. This is to
be expected since the physics of elastic wave propagation is better

accounted for with a full 3-D approach than using the more limited
2-D methodology.

8 C O N C LU S I O N

We have demonstrated an application of 3-D isotropic elastic FWI
to a near-offset field data set consisting primarily of reflected waves.
To investigate the assumptions and approximations in the inversion
work flow, a synthetic sensitivity analysis was performed. The anal-
ysis demonstrated that for near-offset data, elastic FWI is superior to
acoustic FWI due to wrong reflection and transmission coefficients
in the latter method. The elastic FWI produces an elastic velocity
model which reproduces the field data and can be used to produce
conventional depth migrated images with improved resolution and
continuity, and common image point angle gathers with improved
flatness. This model also roughly matches the available well data.
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